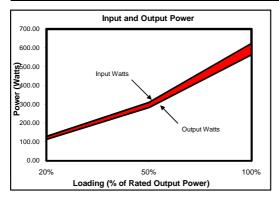
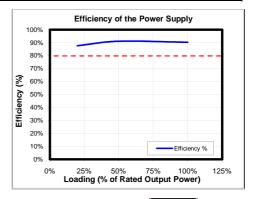
80 PLUS Verification and Testing Report

TYPICAL EFFICIENCY (50% Load):	91.04%
AVERAGE EFFICIENCY:	89.63%
80 PLUS COMPLIANT:	YES

Ecos ID #	1806
Manufacturer	HIGH POWER ELECTRONICS CO., LRD.
Model Number	HP-550-G14S(C)-GOLD
Serial Number	N/A
Year	2009
Туре	ATX12V & EPS12V
Test Date	12/2/2009


Rated Specifications	Value	Units
Input Voltage	100-240	Volts
Input Current	8	Amps
Input Frequency	50-60	Hz
Rated Output Power	550	Watts


Note: All measurements were taken with input voltage at 115 V nominal and 60 Hz.

200	input Current and Voltage Waveforms	10 8 6 4 2	ent (A)				
100 between 100 control of 100 contr	0.003 0.006 0.009 0.012 0.015	0 -2 -4 -6 -8	Current (A)				
-200	-	-10					
Time (s)							

Input AC Current Waveform (ITHD = 16.02%, 50% Load)

I _{RMS}	PF	I _{THD} (%)	Load	Fraction	Input	DC Terminal Voltage (V)/ DC Load Current (A)					Output	Efficiency
Α			(%)	of Load	Watts	12V (cumulative of 12V1, 12V2, etc.)	-12V	3.3V	5V*	5VSB	Watts	%
1.24	0.9246	27.14%	20%	Light	129.15	12.3/7	12/0.1	3.4/2.8	5.2/2.7	5.2/0.5	113.11	87.58%
2.77	0.9721	16.02%	50%	Typical	310.20	12.3/17.5	11.9/0.2	3.4/6.9	5.2/6.9	5.2/1.1	282.42	91.04%
5.48	0.9890	9.99%	100%	Full	624.20	12.3/35.1	11.9/0.4	3.4/13.7	5.2/13.7	5.1/2.3	563.48	90.27%

These tests were conducted by a third party independent testing firm on behalf of the 80 PLUS® Program. 80 PLUS is a certification program to promote highly-efficient power supplies (greater than 80% efficiency in the active mode) in technology applications. http://www.80plus.org/

